Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

Identifieur interne : 000F44 ( Main/Exploration ); précédent : 000F43; suivant : 000F45

Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

Auteurs : Annemarie Seither-Preisler [Autriche] ; Richard Parncutt ; Peter Schneider [Allemagne]

Source :

RBID : pubmed:25122894

Descripteurs français

English descriptors

Abstract

Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered.

DOI: 10.1523/JNEUROSCI.5315-13.2014
PubMed: 25122894
PubMed Central: PMC6705250


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.</title>
<author>
<name sortKey="Seither Preisler, Annemarie" sort="Seither Preisler, Annemarie" uniqKey="Seither Preisler A" first="Annemarie" last="Seither-Preisler">Annemarie Seither-Preisler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cognitive Psychology and Neuroscience Section, Institute of Psychology and Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria, and annemarie.seither-preisler@uni-graz.at.</nlm:affiliation>
<country wicri:rule="url">Autriche</country>
<wicri:regionArea>Cognitive Psychology and Neuroscience Section, Institute of Psychology and Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria</wicri:regionArea>
<wicri:noRegion>Austria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parncutt, Richard" sort="Parncutt, Richard" uniqKey="Parncutt R" first="Richard" last="Parncutt">Richard Parncutt</name>
<affiliation>
<nlm:affiliation>Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Peter" sort="Schneider, Peter" uniqKey="Schneider P" first="Peter" last="Schneider">Peter Schneider</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25122894</idno>
<idno type="pmid">25122894</idno>
<idno type="doi">10.1523/JNEUROSCI.5315-13.2014</idno>
<idno type="pmc">PMC6705250</idno>
<idno type="wicri:Area/Main/Corpus">000F36</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F36</idno>
<idno type="wicri:Area/Main/Curation">000F36</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F36</idno>
<idno type="wicri:Area/Main/Exploration">000F36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.</title>
<author>
<name sortKey="Seither Preisler, Annemarie" sort="Seither Preisler, Annemarie" uniqKey="Seither Preisler A" first="Annemarie" last="Seither-Preisler">Annemarie Seither-Preisler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cognitive Psychology and Neuroscience Section, Institute of Psychology and Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria, and annemarie.seither-preisler@uni-graz.at.</nlm:affiliation>
<country wicri:rule="url">Autriche</country>
<wicri:regionArea>Cognitive Psychology and Neuroscience Section, Institute of Psychology and Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria</wicri:regionArea>
<wicri:noRegion>Austria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parncutt, Richard" sort="Parncutt, Richard" uniqKey="Parncutt R" first="Richard" last="Parncutt">Richard Parncutt</name>
<affiliation>
<nlm:affiliation>Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Peter" sort="Schneider, Peter" uniqKey="Schneider P" first="Peter" last="Schneider">Peter Schneider</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Attention (physiology)</term>
<term>Attention Deficit Disorder with Hyperactivity (pathology)</term>
<term>Attention Deficit Disorder with Hyperactivity (physiopathology)</term>
<term>Auditory Cortex (anatomy & histology)</term>
<term>Auditory Cortex (physiology)</term>
<term>Child (MeSH)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Longitudinal Studies (MeSH)</term>
<term>Magnetic Resonance Imaging (MeSH)</term>
<term>Magnetoencephalography (MeSH)</term>
<term>Male (MeSH)</term>
<term>Music (MeSH)</term>
<term>Neuronal Plasticity (physiology)</term>
<term>Organ Size (physiology)</term>
<term>Reading (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Attention (physiologie)</term>
<term>Cortex auditif (anatomie et histologie)</term>
<term>Cortex auditif (physiologie)</term>
<term>Enfant (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Imagerie par résonance magnétique (MeSH)</term>
<term>Lecture (MeSH)</term>
<term>Magnétoencéphalographie (MeSH)</term>
<term>Musique (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Plasticité neuronale (physiologie)</term>
<term>Taille d'organe (physiologie)</term>
<term>Trouble déficitaire de l'attention avec hyperactivité (anatomopathologie)</term>
<term>Trouble déficitaire de l'attention avec hyperactivité (physiopathologie)</term>
<term>Études longitudinales (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Cortex auditif</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Trouble déficitaire de l'attention avec hyperactivité</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Auditory Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Attention Deficit Disorder with Hyperactivity</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Attention</term>
<term>Cortex auditif</term>
<term>Plasticité neuronale</term>
<term>Taille d'organe</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Attention</term>
<term>Auditory Cortex</term>
<term>Neuronal Plasticity</term>
<term>Organ Size</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Trouble déficitaire de l'attention avec hyperactivité</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Attention Deficit Disorder with Hyperactivity</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Child</term>
<term>Female</term>
<term>Humans</term>
<term>Longitudinal Studies</term>
<term>Magnetic Resonance Imaging</term>
<term>Magnetoencephalography</term>
<term>Male</term>
<term>Music</term>
<term>Reading</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Enfant</term>
<term>Femelle</term>
<term>Humains</term>
<term>Imagerie par résonance magnétique</term>
<term>Lecture</term>
<term>Magnétoencéphalographie</term>
<term>Musique</term>
<term>Mâle</term>
<term>Études longitudinales</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25122894</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>33</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.</ArticleTitle>
<Pagination>
<MedlinePgn>10937-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.5315-13.2014</ELocationID>
<Abstract>
<AbstractText>Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. </AbstractText>
<CopyrightInformation>Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Seither-Preisler</LastName>
<ForeName>Annemarie</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3084-1911</Identifier>
<AffiliationInfo>
<Affiliation>Cognitive Psychology and Neuroscience Section, Institute of Psychology and Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria, and annemarie.seither-preisler@uni-graz.at.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parncutt</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Centre for Systematic Musicology, University of Graz, A-8010 Graz, Austria, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroradiology and Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001288" MajorTopicYN="N">Attention</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001289" MajorTopicYN="N">Attention Deficit Disorder with Hyperactivity</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001303" MajorTopicYN="N">Auditory Cortex</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008137" MajorTopicYN="N">Longitudinal Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015225" MajorTopicYN="N">Magnetoencephalography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="Y">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009473" MajorTopicYN="N">Neuronal Plasticity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009929" MajorTopicYN="N">Organ Size</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011932" MajorTopicYN="Y">Reading</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ADHD</Keyword>
<Keyword MajorTopicYN="N">auditory cortex</Keyword>
<Keyword MajorTopicYN="N">auditory evoked responses</Keyword>
<Keyword MajorTopicYN="N">magnetencephalography</Keyword>
<Keyword MajorTopicYN="N">morphometry</Keyword>
<Keyword MajorTopicYN="N">musical aptitude</Keyword>
<Keyword MajorTopicYN="N">musical learning</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25122894</ArticleId>
<ArticleId IdType="pii">34/33/10937</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.5315-13.2014</ArticleId>
<ArticleId IdType="pmc">PMC6705250</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neuroreport. 1999 Apr 26;10(6):1309-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10363945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Audiol. 1999 Jun;10(6):289-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10385872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Cogn. 1999 Aug;40(3):441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10415130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Cogn Brain Res. 2000 Sep;10(1-2):51-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2001 Jan 22;12(1):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2001 Apr;13(4):669-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11305896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2002 Mar;113(3):407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11897541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2002 Apr;15(4):733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neuropsychol. 2002 Feb;16(1):12-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Audiol Neurootol. 2002 Mar-Apr;7(2):71-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12006736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2002 Jun;3(6):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2002 Jul;5(7):688-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychophysiology. 2002 Sep;39(5):657-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12236333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2002 Oct 9;288(14):1740-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12365958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Psychol. 2002 Oct;61(1-2):139-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12385673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychology. 2003 Jul;17(3):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12959510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Oct;20(2):1215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Biobehav Rev. 2003 Nov;27(7):583-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Nov 22;362(9397):1699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14643117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2004 May;89(2):277-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 2005 Jan-Mar;79(1-3):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Mar 17;434(7031):312-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 May 1;25(4):1068-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15850725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Child Psychol. 2005 Jul;91(3):249-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Child Neuropsychol. 2005 Aug;11(4):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Sep;8(9):1241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Sci. 2005 Jun;28(3):397-419; discussion 419-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16209748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2006 Feb;18(2):199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2007 Mar;17(3):575-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2006 Jul 31;17(11):1225-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16837859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2006 Sep;219(1-2):36-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Child Adolesc Psychiatry. 2006 Aug;45(8):973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16865040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2006 Oct;129(Pt 10):2593-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Oct 4;26(40):10235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17021179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol. 2007 Oct;254(10):1339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17260171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Apr 4;27(14):3799-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Psychol Hum Percept Perform. 2007 Jun;33(3):743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17563235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 Jul;8(7):547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2008 Apr;18(4):828-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2008 Mar;20(3):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2008 Feb;20(2):226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2008 May 15;41(1):113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Med (Lond). 2008 Aug;8(4):410-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18724609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Mar;19(3):712-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18958177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Jan 7;29(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2009 Apr 15;45(3):927-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19168138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2009 Apr;55(4):465-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19265696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Mar 11;29(10):3019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2009 Aug 15;47(2):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ear Hear. 2009 Dec;30(6):675-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19672194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Restor Neurol Neurosci. 2009;27(5):521-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19847074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2009 Dec 9;20(18):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19898261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2010 Jun;31(6):904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20496381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2010 Oct 15;53(1):26-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2010 Aug;11(8):599-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20648064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16494-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Aug 23;5(8):e12326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2011 Jun;47(6):674-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20843509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2010 Oct;16(5):566-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2011 Jan;271(1-2):3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20971178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2011 Jan;15(1):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21093350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Mar 16;31(11):4213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21411662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2011 Oct;47(9):1126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Integr Neurosci. 2011 Jun 13;5:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21716645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2011 May 12;2:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2011 Dec 22;72(6):1080-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22196341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2012 Jan;16(1):12-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Learn Disabil. 2013 Sep-Oct;46(5):413-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2012 Mar 18;15(4):528-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22426254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2012 Apr;1252:116-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Aug 22;32(34):11507-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2013 Jan;51(2):235-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23022430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2012 Nov 8;76(3):486-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23141061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Nov 21;32(47):16597-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23175815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2014 Apr;24(4):956-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2014 May;24(5):1127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23302811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Jan 30;33(5):1858-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Neuropsychol Child. 2012;1(2):112-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23428298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2013 Apr 30;4:222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2013 Nov-Dec;49(10):2822-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2014 Feb;308:109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23988583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2013 Aug 29;4:572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2564-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2013 Sep 03;7:494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 24;8(9):e75876</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 10;8(10):e77250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24130865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Nov 1;342(6158):585-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Nov 6;33(45):17667-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Struct Funct. 2015 Mar;220(2):729-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24310352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2014 Feb 24;8:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24605099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Psychiatry. 2015 Feb;20(2):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24614497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Assist Tomogr. 1989 Nov-Dec;13(6):996-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2584512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1977 Jan;1(1):86-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">560818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Feb 3;267(5198):699-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7839149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Child Adolesc Psychiatry. 1994 Jul-Aug;33(6):849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 1993 Jul-Aug;3(4):313-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8400809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 1996 Sep-Oct;6(5):661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8921202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Speech Lang Hear Res. 1998 Apr;41(2):355-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9570588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Apr 23;392(6678):811-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9572139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 1998 Jul-Aug;8(5):397-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9722083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Autriche</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Karlsruhe</li>
</region>
<settlement>
<li>Heidelberg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Parncutt, Richard" sort="Parncutt, Richard" uniqKey="Parncutt R" first="Richard" last="Parncutt">Richard Parncutt</name>
</noCountry>
<country name="Autriche">
<noRegion>
<name sortKey="Seither Preisler, Annemarie" sort="Seither Preisler, Annemarie" uniqKey="Seither Preisler A" first="Annemarie" last="Seither-Preisler">Annemarie Seither-Preisler</name>
</noRegion>
</country>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Schneider, Peter" sort="Schneider, Peter" uniqKey="Schneider P" first="Peter" last="Schneider">Peter Schneider</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25122894
   |texte=   Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25122894" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021